
IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 4, April 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6420 99

Design & Development of Model Based

Adaptive Testing for Software Quality Assurance

Ms. Ranjana Dalwani
1
, Prof. Makrand Samvatsar

2

M. Tech (SS), Department of CES, PCST, Indore
1

Professor, Department of CES, PCST, Indore
2

Abstract: Testing is very important phase of software development lifecycle which includes verification and validation

of parameters used for evaluating the software. It aims towards creation of defect free codes with better quality and

reliability. Imperfection ID and forecast alongside requires reviewing of item from client end. It directs the

improvements to be driven ceaselessly in nearness of testing systems. We have experienced the thorough investigation

of different research articles which covers the conceivable outcomes of applying testing through various procedures

like segment testing and model based testing. Subsequent to dissecting the issue connected with early era of

experiments and the parceling rationales we have recommended a few changes utilizing exhaustive strategies towards

test handle enhancements and quality primitives. Analytical evaluations are showing the benefits of work and its

probable improvements over other traditional approaches. This paper presents a numerical evaluation of the result on

different operating situations and test case conditions. For measuring the robustness of suggested approach several

scenarios are made and values are taken. From these values it is clearly identified that the suggested approach is

showing better in the direction of software testing and ought to have great future ahead.

Index Term: Software Testing, Automated Testing, Partition Testing, Model Based Testing, Generic Testing, Quality

Assurance.

I. INTRODUCTION

In today’s world most of the manual operations are converted to software solutions. The working of these programs

makes the reduction in user’s effort though the dependency is made here for performing the accurate working. Here if

the existing attributes of the software fails then it might deviate the system in different directions such as business loss,

information loss, commercial downfalls and sometime the losses goes more vibrant. So the ever increasing

dependability and parametric growth of software solutions rises in the testing parameters and techniques. The aim is

towards creation of defect free codes by means of superior excellence. Automation testing is also known as Test

Automation, is when the tester writes scripts and uses software to test the manufactured products. These procedures

involve computerization of a labor-intensive process. It is used to re-run the test scenarios that were performed

manually, quickly, and repeatedly. Separately from deterioration testing, automation testing is also used to check the

submission from load, performance, and stress point of view. It increases the test coverage, improves accuracy, and

saves time and money in comparison to manual testing.

Effective Automated Testing
The essential issue we confront in the midst of testing is managing the gigantic number of experiments we need to

make and execute. For better outcomes test scope criteria are also incorporated into this computerized part. It describes

the principles used to create test cases from the product show. There are two sorts of criteria: information stream and

control-stream. They portray the exertion and the way of the outcomes made consequently by a MBT approach [1].

Amid the time a couple attempts in programmed test information eras have been made.A portion of the specialists

found that the parcel based information based testing is lower execution and exactness while contrasting and irregular

testing. Additionally the disappointment rates secured by arbitrary testing are more than the parcel testing. The higher

likelihood of blunder identification in arbitrary testing with finish scope of sources of info utilizing allotment testing

can be utilized consolidating for better serving the imperfection evacuation.

 Adaptive Testing: It offers some different aspect of testing. It is a feedback oriented testing presenting its strong

nature against the irregular and parcel testing. Despite the fact that its application cost and multifaceted nature is

higher than others. Segment testing with corresponding distribution is appeared to perform in any event and in

addition irregular testing as far as these criteria [3].

 Component Testing:The utilization of arbitrarily built test sets to programming parts would seem to offer an

indistinguishable advantages from for compilers. Thus the creator considered the ramifications of adding arbitrary

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 4, April 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6420 100

testing to the British Computer Society segment testing standard.

 Random testing:For Better comprehension let N be the aggregate number of components in the information space,

and assume we need to haphazardly choose and contributions for testing the framework. It might be conceivable on

the premise of any likelihood dispersion, i.e., the n sources of info can be chosen autonomously with the in spite of

the fact that testing without-substitution is clearly more proficient, the handy execution of a without-substitution

inspecting plan is troublesome and regularly not savvy.

 Model Based Testing: Testing methodologies which uses model is called model based testing (MBT). Model based

testing (MBT) refers to the type of process that focuses on deriving a test model using different types of formal

ones, at that point changing over this test show into a solid arrangement of experiments [5]. Models are the middle

of the road curios between necessity particular and last code.

II. BACKGROUND

Software size and its handling complexity are increased as the development process proceeds and a modular design

gets into shape. Lots of interaction needs to be taken over for getting to and measuring the quality of limits and

branches. For successfully measuring the conduct of the product some unwavering quality enhancements and judgment

techniques is utilized alongside improvement or after advancement. This procedure is named as programming testing

which isused to identify the bugs in program codes parallel as the code progress. Testing involves various resource

utilizations and traversing the code blocks at least once for analyzing the behaviour and integration actions. Measuring

the strength of code and estimating the testing assets for expelling the bugs may expand the unwavering quality and

henceforth it is incorporated into programming improvement life cycle.

 The testing can be classified by their working style and conduct. For the most part it is orders as black box and

white box testing. In discovery testing the codes are tried as a joined useful pieces and its inner structure is not known.

The information sources extents are utilized for applying numerous executing conditions and their conduct. It serves a

parametric model which works as a finite time events and calculates the responses of the overall software’s. The white

box testing as an approach aims towards detecting the internal structure bugs and problems. Its goal is reliability

detection and estimation by completely analyzing the internal structure a logic handling by the use of control graphs. It

is having very large input space and hence it is quite complicated to handle such methods. Totally the plan is to the

discovery of fault that leads to crash that means of above testing strategy. Now, the tester requires effective testing

which identifies all the defects with least endeavors. It can be made achievable by successful employments of both

black box and white box testing. This work specifically focuses on adaptive partition testing based on design models

like UML for improved test cases generation and evaluations.

 In random testing, each test case is selected independently. To make the detection of the first failure quicker (that

is, to reduce the number of test cases needed to detect the first failure), Malaiya introduced an antirandom testing

technique, where the first test case is selected randomly, and each subsequent test case is selected by choosing the one

whose total distance to all the formerly executed test cases is utmost. Here in anti-random testing, the total quantity of

test cases has to be decided in the first place. The randomness of this method is also very limited because only the first

test case is selected randomly; the sequence of all the subsequent test cases is deterministic. The focus will be on

determining which combination of UML diagrams, and their associated constraints, may be used to automatically, or

semi-automatically, generate test cases for adaptive divisiontesting. Prototype tools will be developed in future to

demonstrate the techniques and strategies derived from the proposed investigation. In summary, the study aims to:

(i) Determine what information is necessary to test the integration of components in the process of system

composition;

(ii) Given item 1, investigate which individual or combination of UML diagram types, offer sufficient information to

generate test cases; The results of this aim, will affect aspects of activities 1 to 5 in the figure

(iii) Develop a strategy that reports on the amount of testable information contained in a model.

III. RELATED STUDY

 During the last few years software testing had grown immensely with their strategies. Loads of new and

overpowering procedures are produced which enhances testing exhibitions and declines their expenses. Among them,

some methodologies demonstrates their solid nearness in the individual regions and are identified with their work are

taken here as writing.

 In the paper [7], a dynamic divisionstrategy is presented for selecting the test cases through some online feedback

mechanism. Here the approach is focuses on online medium for generating the test sequences and starts with selecting

criteria of online partition.Additionally the testing is not in light of the codes or interior structure of the projects rather

it utilizes just some metadata data and passing and coming up short state of beforehand executed experiments.In spite

of the fact that, tackling all issues identified with testing prophet is not possible every time on account of their high

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 4, April 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6420 101

unpredictability. In the paper [8], a portion of the assessment is perform on irregular testing technique for discovery

testing. Here the arbitrary experiments are created for recognizing the aggregate bugs from test prophets. It likewise

empowers the scope, on the off chance that it is high the likelihood of blunder discovery is increasingly and if the lesser

scope is accomplished then the experiments amount is expanded. Some more arrangement is given on the versatile

arbitrary testing (ART) are shown in paper [9]. Here the ART is totally examined for exhibiting the conduct of strategy

with higher identification rates of shortcomings in contrasting and ordinary irregular testing. The paper likewise

proposes couple of new ART calculations fir additionally expanding the viability. The recommended calculation gives

comparable working yet the overhead connected with the testing gets lessened. It guarantees that experiments keep up

to be generally widened by just selecting new cases from segments which encase no previous experiment. Aside from

all the above advantages some more change is given in anti-random testing in [10]. The proposed strategies

fundamentally free the reliance of just numerical contributions of anti-random testing. The proposed procedure is more

blame discovery rates than any of the irregular testing variations and is tried on different applications. Quantities of

experiments are practical and test for recognition of issues embedded by utilizing change testing.

 The paper [11] covers some part of parcel testing rationales and conquers its current issue. The work distinguished

that if the sub-areas of the testing contributions for the parcel is not homogeneous than their execution are not as

wanted and their prosperity likewise not contribute so much certainty. Despite the fact that the code scope parameters

in testing is taken for ground as best practice dependably.The paper [12] centres towards additionally enhancing the

execution and mistake discovery likelihood of versatile arbitrary testing. It principally expands the blame uncovering

capacity of irregular testing by presenting the ART in light of two point apportioning. As indicated by the new

calculation of ART-TPP the given are of trying sources of info are partitioned into at least two segment in view of

midpoint hypothesis as opposed to direct division of\r rise to division. Here the primary purpose of division instatement

is haphazardly produced.The paper [13] concentrates on one of the major troublesome with testing which is its

robotized era. This programmed era is performed by earlier making a portion of the era foundation. It diminishes the

endeavors and cost of the testing makes the procedure really robotized. The paper concentrates on era of experiments

from the utilization of hereditary calculations.The paper [14] deals with automatic generation of feasible independent

paths and software test suite optimization using artificial bee colony (ABC) based novel search technique. In this

approach,ABC consolidates both worldwide hunt techniques done by scout honey bees and neighborhood look strategy

done by utilizing honey bees and passerby honey bees. Test Cases are created utilizing test way succession examination

technique as the wellness esteem target work.The paper presents a novel approach to generate the automated test paths

[15]. Due to the delay in the development of software, testing has to be completed in a small time. This leads to

mechanization of testing since its efficiency and also requires less manpower. In this proposed approach, by using one

of the most standard Unified Modelling Language (UML) Activity Diagram, construct the Activity Dependency table

(ADT), then generate the Test paths. Then the test paths are prioritized by means of the Tabular search algorithm.

 The paper [16] shows that the genetic algorithms can be used to automatically generate test cases for path testing.

Using a triangle classification program for instance, analyze comes about demonstrate that Genetic Algorithm based

test information can more viably and effectively than the current strategy does. Some authors also proposes a novel

approach for diverse model based test case generation [17]. It selects a subset of the generated test suite in such a way

that it can be realistically executed and analyzed within the time and reserve constraint, while preserving the fault

enlightening control of the unusual test suite to a maximum extent. In this article, to address this problem, we introduce

a family of similarity-based test case selection (STCS) techniques for test suites generated from state machines. Model

based slicing [18], including the various general approaches and techniques used to compute slices. To understand and

test a large software item is an extremely difficult assignment. One approach to utilize this is program cutting system

that deteriorates the huge projects into littler ones and another is a model based cutting that breaks down the vast

programming engineering model into littler models at the early phase of SDLC (Software Development Life Cycle).

An arranged study of the most unmistakable strategies for programmed era of programming experiments, checked on in

self-standing segments proposed in [19]. The strategies displayed include: (a) basic testing utilizing typical execution,

(b) show based testing, (c) combinatorial testing, (d) arbitrary testing and its assortment of versatile irregular testing,

and (e) look based testing. In general, the paper goes for giving a presentation, exceptional and (moderately) short

review of research in programmed experiment era, while guaranteeing extensiveness and legitimacy.

IV. PROPOSED SOLUTION

 This work evaluates the novel generic adaptive partition testing suggested in [21] the design consideration of

models logic. Here the technique generatesthe test information which is altogether circulated in general locale of the

isolated segment. In this manner, the recommended technique can turn formal identification to finish investigation and

the likelihood of blame discovery is additionally expanded. Generally the versatile irregular testing is of just two

structures; separate based and parceling based. The recommended cross breed approach is mix of both the measures for

viable assurance of shortcomings with least number of experiments. The main problem with testing is about managing

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 4, April 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6420 102

the expansive number of automated test suite creation with smaller size & less complexity. Consequently, we are

focusing on automatic and effective test case handling concept taking in mind the early generation of test cases.

 We have parted our work in two identified domains: First is adaptive divisiontesting for optimization and second is

design based test data generation (Early Generation). Usually an infinite number of possible tests could be generated

from a model. The test forecaster choose test production criterion to select the uppermost priority tests or to ensure

good coverage of the system behaviour. One common kind of test generation criteria is based on structural model

coverage, using well known test design strategy of path based testing. This is an automated process that generates the

required number of high-level (abstract) test cases from the test model using web computation. It could be of control

and data flow and applies with a detailed analysis for generating the codes functional blocks where separate input can

be passed.

This work suggested a model based testing. It enhances the performance of combinatorial and model based testing in

many aspects. It is intended that our strategies will convey to a expensive, how much in order is enough to enable

routine creation of test cases in an optimized manner. Our research domain can be separated into two majorly identified

domain of interaction testing which reduces the test case size & complexity & a model based approach for early test

case generation. For supporting the defined objective we had proposed a design architecture of the concept along with

that a test case reduction algorithm IPOG and a DDE algorithm.

It typically involves the following steps

1. Building an abstract model of the behaviour of the designed software system applied under testing process. The

model forms a subset of the system requirements.

2. Definition of test selection criteria. The criteria of interaction testing can be defining what test cases to create from

the replica.

3. Validating the replica. This is typically done by example conceptual test cases from the model and analyzing them.

This step is performed to detect major errors in the replica that may even hold back creation of test cases.

4. Forming abstract tests from the model, using the defined test selection criteria. At this stage, the generated test cases

are articulated in provisions of the abstraction used by the copy.

5. Transforming (concretize) the abstract test cases into executable test cases.

6. Executing the test cases. At execution time, an adaptor constituent transforms the output of the scheme to the

concept of the model.

7. Analyzing the execution result.

In our research & implementation we tries to prove that the given algorithm & design is well defined for improving

efficiency and performance through multiple parameters (Size, Time, Complexity, Cost etc.). It is a well-defined

dynamic approach for quality improvements because it provides effective error detection at very low cost

V. RESULT ANALYSIS

 The suggested system is completely implemented on the .NET framework which provides various features for

serving the complete feature in the form a tool view. Here the tool is also been able to analyzed the generation process

on the basis of some of the well known factors such as number of generated test, compete coverage achieved by the

generated test, generation time, the system resources such as CPU and RAM utilized etc. The robust experimental

analysis shows the tool behaviour setting a milestone in the field of test case generation and coverage analyses.

Table 1: Selective Test Generation

S. No Test Data Test Type Selected Attributes CPU Utilization RAM Utilization Page Faults

1 Test Set 1 Manual h , j 1% 30.05% 0

2 Test Set 2 Manual Netscape6.1,XP-Pro 5% 30.30% 0

3 Test Set 3 UML VTR,PTB 7% 28.76% 0

4 Test Set 4 UML Trst , Frst 3% 29.33% 0

Table 2: Pseudorandom Selective Test Generation

S. No Test Data Test Type Reduced Test Counts CPU Utilization RAM Utilization Page Faults

1 Test Set 1 Manual 13 2% 30.094% 0

2 Test Set 2 Manual 42 3% 30.34% 0

3 Test Set 3 UML 6 2% 28.34% 0

4 Test Set 4 UML 4 1% 29.39% 0

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 4, April 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6420 103

Time Based Coverage Analysis

Now the above generated comma separated value (csv) files are passed as an input to the ComCoverage tool which

analyses the coverage achieved without partition logic, with partition logic and with pseudorandom generation stages of

the solution phases. Table gives an idea that how many possible combinations of test cases are possible and number of

test cases selected by the suggested system which is giving 100% coverage in significantly lesser time, which saves lots

of efforts of testers.

Table 3: UML InputCoverage for Test Case Analysis through ComCoverage

UML

Diagram

 Extraction

No. of Pairs Covered

in all Combinations

No. Of Test

Case Generated

Coverage

Achieved

Time

Required

1

S1 Success 6 32 96.9% 1.3522

P1 Success 6 32 100% 1.3522

R1 Success 6 32 100% 1.3522

2

S2 Success 4 19 94.73% 1.2549

P2 Success 4 19 100% 1.2549

R2 Success 4 19 100% 1.2549

Summary: Theabove table shows an effective early test case generation feature of our tool which implies on the data

extraction from UML activity diagram. We have developed an algorithm for getting this result. We shows the

performance and result evaluation of our tool on the basic of 7 parameters. Firstly the algorithm is capable of extracting

the correct data from given UML textual notations. The table shows how our tool effectively reduces the test size in

very less time and gives maximum coverage. The feature which we have proposed and implemented is not present in

any combinatorial testing tool and serves as add on module for our research. In future its improved versions are likely

to be developed.

VI. CONCLUSION

Software testing with adaptive behaviour will always allows some open process for testing and its re-execution. The

effective test cases can be determined if the test comes from complete regions and covers at least once each type of

input. But all of certain such heavy numbers of inputs are not tested with some minimum attempts. Hence, a new

mechanism is required which reduces the test size but increases the code coverage. It works towards assuring the

reliability of the system. This paper proposed an integration of adaptive partition testing with design model based logics

towards effective and early identification of bugs according even with their priority levels also. Means the module

which is most critical should be tested more. It overcomes the existing issues of high testing cost and computation

complexity. On the preliminary evaluations the works seems to provide effective solution of testing domains.

VII. FUTURE WORK

Some problems and concepts that remain unaddressed and can be performed in future are as follow:

(i) In future with the help of proposed scheme we are looking for an enhancement of design based development

testing to requirement based development testing.

(ii) We can also extends our work towards inculpating all the various tool which we used as analysis tools such as

ComCoverage, UML to text converter like PlantUML in an single entity.

(iii) In our proposed scheme, we provide the simulation for various test performance parameters for combinatorial test.

In future we can also simulate some other test parameters such as unit test, branch condition, equivalence

divisionand other methods for design base test scenarios development.

REFERENCES

[1] Jon Edvardsson, “A Survey on Automatic Test Data Generation”, in Proceedings of the Second Conference on Computer Science and

Engineering in Linkoping, pages 21{28.ECSEL, October 1999.
[2] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira & Guilherme H. Travassos, “A Survey on Model-based Testing Approaches: A

Systematic Review”, in WEASELTech’07, November 5, 2007, Atlanta Georgia, USA, ACM, ISBN 978-1-59593-880-0/07, June 2007.
[3] Renee C. Bryce, Ajitha Rajan & Mats P.E. Heimdahl, “Interaction Testing in Model-Based Development: Effect on Model-Coverage”, in 13th

Asia Pacific Software Engineering Conference (APSEC'06), ISBM-0-7695-2685-3/06, Aug 2007.

[4] Usman Farooq, Chiou Peng Lam & Huaizhong Li, ”Towards Automated Test Sequence Generation”, in Proceedings of 19th Australian
Conference on Software Engineering ASWEC 2008 (pp. 441-450). Australia: Dec 2008.

[5] Robert M. Herons, “Oracles for Distributed Testing”, in School of Information Systems, Computing, and Mathematics, Brunel University,

Uxbridge, Middlesex, UB8 3PH, UK, 2010.

IJARCCE ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 4, April 2017

Copyright to IJARCCE DOI10.17148/IJARCCE.2017.6420 104

[6] Suresh Thummalapenta, Saurabh Sinha, Debdoot Mukherjee & Satish Chandra, “Automating Test Automation”, in Publication of IBM T.J.

Watson Research Center, Sep 2011.

[7] Sinaga, A., Zhou, Z., Susilo, W., Zhao, L. & Cai, K. 2009, ''Improving software testing cost-effectiveness through dynamic partitioning'', in B.
Choi (eds), Proceedings of the 9th International Conference on Quality Software, IEEE, Los Alamitos, USA, pp. 249-258.

[8] Andrea Arcuri, Muhammad Zohaib Iqbal and Lionel Briand, “Random Testing: Theoretical Results and Practical Implications”, in International

Symposium on Software Testing and Analysis (ISSTA), ACM, 2010.
[9] T.Y. Chen, G. Eddy, R. Merkel and P.K. Wong, “Adaptive Random Testing Through Dynamic Partitioning”, in Proceedings of the Fourth

International Conference on Quality Software (QSIC’04), IEEE, doi:0-7695-2207-6/04, 2010

[10] Kulvinder Singh, Rakesh Kumar and Iqbal Kaur, “ Effective Test Case Generation Using Anti Random Software Testing”, in International
Journal of Engineering Science and Technology Vol. 2(11), 2010, 6016-6021

[11] Marcel Böhme, “Software Regression as Change of Input Partitioning”, in ICSE Doctoral Symposium , IEEE, Zurich, Switzerland , doi:978-1-

4673-1067-3/12, 2012
[12] Chengying Mao, “Adaptive Random Testing Based on Two-Point Partitioning”, in International Journal of Informatica, Volume 36, 2012

[13] Rakesh Kumar, Surjeet Singh, Girdhar Gopal, “Automatic Test Suit generation with Genetic Algorithm”, in IJETCAS, ISSN (Online): 2279-

0055, 2013

[14] Renee C Bryce, Sreedevi Sampath & Atif M Memon, “Developing a Single Model and Test Prioritization Strategies for Event-Driven

Software”, in IEEE Transactions on Software Engineering, Vol. 37, No. 1, Jan 2011.

[15] Soma Sekhara Babu Lam, M L Hari Prasad Raju, Uday Kiran M & Swaraj Ch, “Automated Generation of Independent Paths and Test Suite
Optimization Using Artificial Bee Colony”, in International Conference on Communication Technology and System Design, Published by

Elsevier Ltd, ISSN 1877-7058, 2012.

[16] Premal B. Nirpal & K. V. Kale, “Comparison of Software Test Data for Automatic Path Coverage Using Genetic Algorithm”, in International
Journal of Computer Science & Engineering Technology (IJCSET), ISSN : 2229-3345, Vol. 1 No. 1, Sep 2012.

[17] A.V.K. Shanthi & G. MohanKumar, “A Novel Approach for Automated Test Path Generation using TABU Search Algorithm”, in International

Journal of Computer Applications, ISSN 0975 – 888,Volume 48– No.13, June 2012.
[18] Rupinder Singh & Vinay Arora, “Literature Analysis on Model based Slicing”, in International Journal of Computer Applications, ISSN 0975 –

8887, Volume 70– No.16, May 2013.

[19] Saswat Anand, Edmund Burke et. al., “An Orchestrated Survey on Automated Software Test Case Generation”, in Journal of Systems and
Software, Feb 2013.

[20] Junpeng Lv, Hai Hu, Kai-Yuan Cai, and Tsong Yueh Chen, “Adaptive and Random Partition Software Testing”, in IEEE Transaction of

Systems , Man and Cybernetics:Systems, ISSN 2168-2216 ,doi: 10.1109/TSMC.2014.2318019, 2014.
[21] Ms. Ranjana Dalwani1 & Prof. Makrand Samvatsar, “Generic Adaptive Partition Testing Using Design Models for Software Quality

Assurance”, in IJARCCE ISSN (Online) 2278-1021 ISSN (Print) 2319 5940, Vol. 5, Issue 7, July 2016.

